n<OpTLONSIE™ - s on<0ption<OPTLON=FH - n< tion<00t10néupﬁhv¥:vr<0 t1on<0pTLON=VE
&ti.on<0pt10n<op§ Lo OF netinn<0ption<Option .Op nntion<Qption<0ption* P Onti ®n<0¥)t102‘
‘ . L 1 < -3 an<0
- thﬁ<0pt ion) ° ° pi\Or'< p
o on-optif HOW many options fit into a boolean? P . on-
3~+ann<0Dtioﬂ<0)LL”“, T notion<QpTLON=UPTTeT — f.-bﬂlnérwoﬂ OPTTo™ T . o OntiC
. 9 S1lze_OT : :<bool> == ; 0
o| tl;dr: Exactly 254 options fit into a boolean. || <i e of::<option<bools=() == 1 OE
TToTT T " TilonNJupceo™ 7 B - <O t size_of::<nest!(bool, 254)>() == 1, v
s ~0ntion<0p Lion ﬂnT‘LOn" i(it ot el (Begl, ZEE() - o p
A If you touch computers, you will most likely assume LO_% | pN
| that a bool holds exactly two possible values (true cOPTY // NonzeroUs cannot be zero, so we use the 1
“| and false), and that it takes up one byte of memory ion<{(// zero value to denote 'None'. <(
‘| (we are ignoring the beautiful gift that is C++'s pti0l| size_of::<Option<u8>>() == 2; i
O std: :vector<bool> here). n<Op] size_of::<Option<NonZeroU8>>() == 1; 0]
n .
tion : |
: . .| // no memory cost of options on references! LO
»\t In fact, looking at Rust: 1<OPt| size of ::<&T>() == 8: Lt
T1__ s .) riond size_of::<Option<&T>>() == 8§; <
:, ==> assert_eq! (size_of::<bool>(), 1); Hpt LOMEUP e~ T Ton=Up~~ f\xti
;) But what about size of::<Option<bools>()? [[Takingalookat std::Vec, it turns out that we can nest it in (
d For any T, Option<T> represents a value that may or || Over a thousand options without increasing its memory |

may not exist. The type systems helps keep track of
nullability, and you don’t have to pass raw pointers
everywhere. All of this extends to Rust's sum types in
general. (Importantly, they are all tagged unions.)

We are using options since those are an easy
example, and correspond to exactly one additional
state of data. (Nested options happen ‘by accident’
when APIs interlock, but there is no practical reason
to construct them. Either there is a value inside of
them or not, that's equivalent to a normal option.)

It turns out that Option<bool> takes up exactly one
byte of memory, the same as bool! The same is true
for Option<Option<bool>>, all the way up to 254
nested options. At 255 nested options the compiler
finally relents and requires a wastefully decadent two
bytes to satisfy our sick desires.

This is known as the niche optimization..
+1an<QPTLON<UPT T¥T7 ™7 An+ian<OpTion

460

n{ footprint!

4
size_of::<Vec<T>>() == 24;
size_of::<Option<Vec<T>>>()

9 size_of::<nest! (Vec<T>, 1024

== 24;
)>() =
If we compare this with C++ we see that
std::optional<std::vector<int>> requires a full 8
additional bytes over the base type.

H 24;

0
p

t
kO
L

Al
(| How does this work? Rust's types do not follow the C-ABI
(Not unless you add #[repr(C)] annotations.). In fact, the
Rust compiler is allowed to reorder the fields of structs, stuff
data into unreachable bit patterns, and more. This allows [
optimizations which C++ is not performing (by default).

(e
0
1
t
<
al
<(]

By

A Vec has three fields: A pointer, a length, and a capacity.
Length and capacity are assumed to be smaller than the
largest pointer-sized signed integer on the platform. As a
result, the highest bit of the capacity integer can be reused.

// how to nest options hundreds of times?

// just commit recursive crimes with macros!

// you can just do things(tm)

// -> use number of commas to track depth

// __nest!(u8; ,,) == Option<__nest!(u8; ,)>

macro_rules! __nest {

(Stype:ty; , $(Scount:tt)*) => {

Option<__nest!(Stype; $(Scount)*)>

' b

(Stype:ty;) => {
Stype
}

1l

}

// nest!(bool, 2) == Option<Option<bool>>
macro_rules! nest {
(St:ty, @) => { __nest!(St;) };
(St:ty, 1) => { __nest!($t; ,) };
(St:ty, 2) => { __nest!($t; ,,) };
(St:ty, 3) => { __nest!($t; ,,,) };
// ...another few hundred lines of this

}

Consequently: (1) If the highest bit is not set, the value exists
and the representation of the vector in memory is the
‘standard’ one. (2) If it is set, the other capacity bits are used
to ‘count’, telling us which exact option is none. Pointer and
length are uninitialized memory and not accessible.

p
n
t
n<g
Lq
0
Most importantly, this also applies to structs containing a
Vec. If you have a struct that has a Vec, String, reference,
bool, etc. in it, Rust will use the niche optimization to make
any option containing your struct cheaper! ,J
ptilonN<UPTtTo " ™7 Ar+inn<QpTTONSUPE==T" —7 P
iLQ

=4

0
p
n

S

~

A~ 0O

I would love to tell you that Rust always uses all available
optimization space with all of its tagged unions (not just
O| options). This is not the case.

< In many cases it is: Result<Vec<i32>, u64> (either a
i Vec<i32> or a u64) has the same size as Vec<i32>.
r However, Result<bool, bool> for whatever reason takes
0 up two bytes of memory. This is, of course, deeply upsetting/f

AT TS O T

0pt1on<0pTTOT=UP™ -
nf'&<0pti@n<0ptton§0ptxot.On
or Optton<0ptxon<0p i
0n<0ption<0pt
~Nntion<

P~
n<0pt1lo
)’[“‘L0ﬂ<0p‘t) P
\<Option<Option

rton<ODtL0n<OptE option<0p

PR -

<Qption
<option<0

. o c0ptior ,
ion<0pt tion<Option

TT~UWV

<O <OpTLON<UP T g

. p50 +ion<Option<options P Ootion<0ptio
Opt Lot p%0pT10n<Opti0ﬂ<0Dtl2ﬂ<riog+tOn<0pt
) Nt < ‘\5.40‘1"05 - . P
Option<0ption<bP® t ./ o options

n<

s~ Nntion<

